Computing the greedy spanner in linear space

S.P.A. Alewijnse, Q.W. Bouts, A.P. Brink, ten, K. Buchin

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

2 Citaten (Scopus)


The greedy spanner is a high-quality spanner: its total weight, edge count and maximal degree are asymptotically optimal and in practice significantly better than for any other spanner with reasonable construction time. Unfortunately, all known algorithms that compute the greedy spanner of n points use O(n2) space, which is impractical on large instances. To the best of our knowledge, the largest instance for which the greedy spanner was computed so far has about 13,000 vertices. We present a O(n)-space algorithm that computes the same spanner for points in Rd running in O(n2 log2n) time for any fixed stretch factor and dimension. We discuss and evaluate a number of optimizations to its running time, which allowed us to compute the greedy spanner on a graph with a million vertices. To our knowledge, this is also the first algorithm for the greedy spanner with a near-quadratic running time guarantee that has actually been implemented.
Originele taal-2Engels
TitelAlgorithms – ESA 2013 (21st Annual European Symposium, Sophia Antipolis, France, September 2-4, 2013. Proceedings)
RedacteurenH.L. Bodlaender, G.F. Italiano
Plaats van productieBerlin
ISBN van geprinte versie978-3-642-40449-8
StatusGepubliceerd - 2013
Evenement21st Annual European Symposium on Algorithms (ESA 2013) - Sophia Antipolis, Frankrijk
Duur: 2 sep. 20134 sep. 2013
Congresnummer: 21st

Publicatie series

NaamLecture Notes in Computer Science
ISSN van geprinte versie0302-9743


Congres21st Annual European Symposium on Algorithms (ESA 2013)
Verkorte titelESA 2013
StadSophia Antipolis
Ander21st Annual European Symposium on Algorithms
Internet adres


Duik in de onderzoeksthema's van 'Computing the greedy spanner in linear space'. Samen vormen ze een unieke vingerafdruk.

Citeer dit