Computing the Fréchet Distance Between Uncertain Curves in One Dimension

Kevin Buchin, Maarten Löffler, Tim Ophelders, Aleksandr Popov (Corresponding author), Jérôme Urhausen, Kevin Verbeek

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

8 Citaten (Scopus)
190 Downloads (Pure)

Samenvatting

We consider the problem of computing the Fréchet distance between two curves for which the exact locations of the vertices are unknown. Each vertex may be placed in a given uncertainty region for that vertex, and the objective is to place vertices so as to minimise the Fréchet distance. This problem was recently shown to be NP-hard in 2D, and it is unclear how to compute an optimal vertex placement at all.

We present the first general algorithmic framework for this problem. We prove that it results in a polynomial-time algorithm for curves in 1D with intervals as uncertainty regions. In contrast, we show that the problem is NP-hard in 1D in the case that vertices are placed to maximise the Fréchet distance.

We also study the weak Fréchet distance between uncertain curves. While finding the optimal placement of vertices seems more difficult than the regular Fréchet distance—and indeed we can easily prove that the problem is NP-hard in 2D—the optimal placement of vertices in 1D can be computed in polynomial time. Finally, we investigate the discrete weak Fréchet distance, for which, somewhat surprisingly, the problem is NP-hard already in 1D.
Originele taal-2Engels
Artikelnummer101923
Aantal pagina's21
TijdschriftComputational Geometry
Volume109
DOI's
StatusGepubliceerd - 1 feb. 2023

Financiering

Partially supported by the Dutch Research Council (NWO) under project no. 614.001.504.Supported by the Dutch Research Council (NWO) under project no. 612.001.801.Supported by the Dutch Research Council (NWO) under project no. 612.001.651.

FinanciersFinanciernummer
Nederlandse Organisatie voor Wetenschappelijk Onderzoek612.001.651, 614.001.504, 612.001.801

    Vingerafdruk

    Duik in de onderzoeksthema's van 'Computing the Fréchet Distance Between Uncertain Curves in One Dimension'. Samen vormen ze een unieke vingerafdruk.
    • Algorithms for Imprecise Trajectories

      Popov, A. A., 12 okt. 2023, Eindhoven: Eindhoven University of Technology. 259 blz.

      Onderzoeksoutput: ScriptieDissertatie 1 (Onderzoek TU/e / Promotie TU/e)

      Open Access
      Bestand
    • Computing the Fréchet Distance Between Uncertain Curves in One Dimension

      Buchin, K., Löffler, M., Ophelders, T., Popov, A., Urhausen, J. & Verbeek, K., 11 aug. 2021, Algorithms and Data Structures: 17th International Symposium, WADS 2021, Virtual Event, August 9–11, 2021, Proceedings. Lubiw, A. & Salavatipour, M. (uitgave). Cham, Switzerland: Springer Nature, blz. 243–257 15 blz. (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); vol. 12808 LNCS).

      Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

    Citeer dit