Computing the chromatic number using graph decompositions via matrix rank

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

20 Downloads (Pure)

Samenvatting

Computing the smallest number q such that the vertices of a given graph can be properly q-colored is one of the oldest and most fundamental problems in combinatorial optimization. The q-COLORING problem has been studied intensively using the framework of parameterized algorithmics, resulting in a very good understanding of the best-possible algorithms for several parameterizations based on the structure of the graph. For example, algorithms are known to solve the problem on graphs of treewidth tw in time O(qtw), while a running time of O((q - ϵ)tw) is impossible assuming the Strong Exponential Time Hypothesis (SETH). While there is an abundance of work for parameterizations based on decompositions of the graph by vertex separators, almost nothing is known about parameterizations based on edge separators. We fill this gap by studying q-COLORING parameterized by cutwidth, and parameterized by pathwidth in bounded-degree graphs. Our research uncovers interesting new ways to exploit small edge separators. We present two algorithms for q-COLORING parameterized by cutwidth ctw: a deterministic one that runs in time O(2ω·ctw), where ω is the matrix multiplication constant, and a randomized one with runtime O(2ctw). In sharp contrast to earlier work, the running time is independent of q. The dependence on cutwidth is optimal: we prove that even 3-COLORING cannot be solved in O((2 - ϵ)ctw) time assuming SETH. Our algorithms rely on a new rank bound for a matrix that describes compatible colorings. Combined with a simple communication protocol for evaluating a product of two polynomials, this also yields an O((⌊d/2⌋ + 1)pw) time randomized algorithm for q-COLORING on graphs of pathwidth pw and maximum degree d. Such a runtime was first obtained by Björklund, but only for graphs with few proper colorings. We also prove that this result is optimal in the sense that no O((⌊d/2⌋ +1-ϵ)pw)-time algorithm exists assuming SETH.

Originele taal-2Engels
Titel26th European Symposium on Algorithms, ESA 2018
RedacteurenHannah Bast, Grzegorz Herman, Yossi Azar
Plaats van productieWadern
UitgeverijSchloss Dagstuhl - Leibniz-Zentrum für Informatik
Aantal pagina's15
ISBN van elektronische versie978-3-95977-081-1
DOI's
StatusGepubliceerd - 1 aug 2018
Evenement26th European Symposium on Algorithms, ESA 2018 - Helsinki, Finland
Duur: 20 aug 201822 aug 2018

Publicatie series

NaamLeibniz International Proceedings in Informatics (LIPIcs)
Volume112

Congres

Congres26th European Symposium on Algorithms, ESA 2018
LandFinland
StadHelsinki
Periode20/08/1822/08/18

Vingerafdruk Duik in de onderzoeksthema's van 'Computing the chromatic number using graph decompositions via matrix rank'. Samen vormen ze een unieke vingerafdruk.

  • Citeer dit

    Jansen, B. M. P., & Nederlof, J. (2018). Computing the chromatic number using graph decompositions via matrix rank. In H. Bast, G. Herman, & Y. Azar (editors), 26th European Symposium on Algorithms, ESA 2018 [47] (Leibniz International Proceedings in Informatics (LIPIcs); Vol. 112). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. https://doi.org/10.4230/LIPIcs.ESA.2018.47