Computing Smallest Convex Intersecting Polygons

Antonios Antoniadis, Mark de Berg, Sándor Kisfaludi-Bak (Corresponding author), Antonis Skarlatos

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademic

87 Downloads (Pure)

Samenvatting

A polygon C is an intersecting polygon for a set O of objects in the plane if C intersects each object in O, where the polygon includes its interior. We study the problem of computing the minimum-perimeter intersecting polygon and the minimum-area convex intersecting polygon for a given set O of objects. We present an FPTAS for both problems for the case where O is a set of possibly intersecting convex polygons in the plane of total complexity n.
Furthermore, we present an exact polynomial-time algorithm for the minimum-perimeter intersecting polygon for the case where O is a set of n possibly intersecting segments in the plane. So far, polynomial-time exact algorithms were only known for the minimum perimeter intersecting polygon of lines or of disjoint segments.
Originele taal-2Engels
Artikelnummer2208.07567
Aantal pagina's28
TijdschriftarXiv
Volume2022
DOI's
StatusGepubliceerd - 16 aug. 2022

Vingerafdruk

Duik in de onderzoeksthema's van 'Computing Smallest Convex Intersecting Polygons'. Samen vormen ze een unieke vingerafdruk.

Citeer dit