Computing Matrix Roots by 2nd Kind Pseudo-Chebyshev Functions and Dunford-Taylor Integral

Diego Caratelli, Rekha Srivastava, Paolo Emilio Ricci (Corresponding author)

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

20 Downloads (Pure)

Samenvatting

The problem of finding matrix roots for a wide class of non-singular complex matrices has been solved by using the 2nd kind pseudo-Chebyshev functions and the Dunford-Taylor integral. For an n-th root of an r x r matrix we find in general nr roots, depending on the chosen determination of the numerical roots appearing in the considered equation. Of course the exceptional cases for which there are infinite many roots, or no roots at all are excluded by the introduced technique.

Originele taal-2Engels
Pagina's (van-tot)47-62
Aantal pagina's16
TijdschriftLecture Notes of TICMI
Volume22
StatusGepubliceerd - 2021

Bibliografische nota

Publisher Copyright:
© 2021. Tbilisi University Press. All Rights Reserved.

Financiering

The authors thanks for the invitation to participate in the AMINSE 2020-(2021) Conference. and dedicate their contribution to the 75th birth anniversary of Prof. Dr. George Jaiani.

Vingerafdruk

Duik in de onderzoeksthema's van 'Computing Matrix Roots by 2nd Kind Pseudo-Chebyshev Functions and Dunford-Taylor Integral'. Samen vormen ze een unieke vingerafdruk.

Citeer dit