Activiteiten per jaar
Samenvatting
Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths. Since most CRCs develop from colorectal polyps (CRPs), accurate endoscopic differentiation facilitates decision making on resection of CRPs, thereby increasing cost-efficiency and reducing patient risk. Current classification systems based on whitelight imaging (WLI) or narrow-band imaging (NBI) have limited predictive power, or they do not consider sessile serrated adenomas/polyps (SSA/Ps), although these cause up to 30% of all CRCs. To better differentiate adenomas, hyperplastic polyps, and SSA/Ps, this paper explores the feasibility of two approaches: (1) an accurate computer-aided diagnosis (CADx) system for automated diagnosis of CRPs, and (2) novel endoscopic imaging techniques like blue-light imaging (BLI) and linked-color imaging (LCI). Two methods are explored to predict histology: (1) direct classification using a support vector machine (SVM) classifier, and (2) classification via a clinical classification model (WASP classification) combined with an SVM. The use of probabilistic features of SVM facilitates objective quantification of the detailed classification process. Automated differentiation of colonic polyp subtypes reaches accuracies of 78−96%, thereby improving medical expert results by 4−20%. Diagnostic accuracy for directly predicting adenomatous from hyperplastic histology reaches 93% and 87−90% using NBI and the novel BLI and LCI techniques, respectively, thus improving medical expert results by 26% and 20−23%, respectively. Predicting adenomatous histology in diminutive polyps with high confidence yields NPVs of 100%, clearly satisfying the PIVI guideline recommendation on endoscopic innovations (≥90% NPV). Our CADx system outperforms clinicians, while the novel BLI technique adds performance value.
Originele taal-2 | Engels |
---|---|
Titel | Medical Imaging 2019: Computer-Aided Diagnosis |
Subtitel | Computer-Aided Diagnosis |
Redacteuren | Kensaku Mori, Horst K. Hahn |
Plaats van productie | Bellingham |
Uitgeverij | SPIE |
Aantal pagina's | 8 |
ISBN van elektronische versie | 9781510625471 |
DOI's | |
Status | Gepubliceerd - 13 mrt. 2019 |
Evenement | SPIE Medical Imaging 2019 - San Diego, Verenigde Staten van Amerika Duur: 16 feb. 2019 → 21 feb. 2019 |
Publicatie series
Naam | Proceedings of SPIE |
---|---|
Volume | 10950 |
ISSN van geprinte versie | 0277-786X |
Congres
Congres | SPIE Medical Imaging 2019 |
---|---|
Land/Regio | Verenigde Staten van Amerika |
Stad | San Diego |
Periode | 16/02/19 → 21/02/19 |
Vingerafdruk
Duik in de onderzoeksthema's van 'Computer-aided classification of colorectal polyps using blue-light and linked-color imaging'. Samen vormen ze een unieke vingerafdruk.Activiteiten
- 1 Aangemelde presentatie
-
Computer-aided classification of colorectal polyps using blue-light and linked-color imaging
Scheeve, T. (Spreker), Schreuder, R.-M. (Deelnemer), van der Sommen, F. (Deelnemer), IJspeert, J. E. G. (Deelnemer), Dekker, E. (Deelnemer), Schoon, E. J. (Deelnemer) & de With, P. H. N. (Deelnemer)
18 feb. 2019Activiteit: Types gesprekken of presentaties › Aangemelde presentatie › Wetenschappelijk
Onderzoekersoutput
- 2 Citaties
- 1 Conferentiebijdrage
-
Image Features for Automated Colorectal Polyp Classification Based on Clinical Prediction Models
van Grinsven, M. C. A., Scheeve, T., Schreuder, R.-M., van der Sommen, F., Schoon, E. J. & de With, P., 26 aug. 2019, 2019 IEEE International Conference on Image Processing, ICIP 2019 - Proceedings. Piscataway: Institute of Electrical and Electronics Engineers, blz. 210-214 5 blz. 8803822Onderzoeksoutput: Hoofdstuk in Boek/Rapport/Congresprocedure › Conferentiebijdrage › Academic › peer review
3 Citaten (Scopus)