Computationally guided in-vitro vascular growth model reveals causal link between flow oscillations and disorganized neotissue

Eline E. van Haaften, Sjeng Quicken, Wouter Huberts, Carlijn V.C. Bouten (Corresponding author), Nicholas A. Kurniawan

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

5 Citaten (Scopus)

Samenvatting

Disturbed shear stress is thought to be the driving factor of neointimal hyperplasia in blood vessels and grafts, for example in hemodialysis conduits. Despite the common occurrence of neointimal hyperplasia, however, the mechanistic role of shear stress is unclear. This is especially problematic in the context of in situ scaffold-guided vascular regeneration, a process strongly driven by the scaffold mechanical environment. To address this issue, we herein introduce an integrated numerical-experimental approach to reconstruct the graft-host response and interrogate the mechanoregulation in dialysis grafts. Starting from patient data, we numerically analyze the biomechanics at the vein-graft anastomosis of a hemodialysis conduit. Using this biomechanical data, we show in an in vitro vascular growth model that oscillatory shear stress, in the presence of cyclic strain, favors neotissue development by reducing the secretion of remodeling markers by vascular cells and promoting the formation of a dense and disorganized collagen network. These findings identify scaffold-based shielding of cells from oscillatory shear stress as a potential handle to inhibit neointimal hyperplasia in grafts.

Originele taal-2Engels
Artikelnummer546
Aantal pagina's12
TijdschriftCommunications biology
Volume4
Nummer van het tijdschrift1
DOI's
StatusGepubliceerd - 10 mei 2021

Vingerafdruk

Duik in de onderzoeksthema's van 'Computationally guided in-vitro vascular growth model reveals causal link between flow oscillations and disorganized neotissue'. Samen vormen ze een unieke vingerafdruk.

Citeer dit