Computational Intelligence for life sciences

Daniela Besozzi (Corresponding author), Mauro Castelli, Paolo Cazzaniga, Luca Manzoni, Marco S. Nobile, Stefano Ruberto, Leonardo Rundo, Simone Spolaor, Andrea Tangherloni, Leonardo Vanneschi

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

1 Citaat (Scopus)


Computational Intelligence (CI) is a computer science discipline encompassing the theory, design, development and application of biologically and linguistically derived computational paradigms. Traditionally, the main elements of CI are Evolutionary Computation, Swarm Intelligence, Fuzzy Logic, and Neural Networks. CI aims at proposing new algorithms able to solve complex computational problems by taking inspiration from natural phenomena.
In an intriguing turn of events, these nature-inspired methods have been widely adopted to investigate a plethora of problems related to nature itself.
In this paper we present a variety of CI methods applied to three problems in life sciences, highlighting their effectiveness: we describe how protein folding can be faced by exploiting Genetic Programming, the inference of haplotypes can be tackled using Genetic Algorithms, and the estimation of biochemical kinetic parameters can be performed by means of Swarm Intelligence.
We show that CI methods can generate very high quality solutions, providing a sound methodology to solve complex optimization problems in life sciences.
Originele taal-2Engels
Pagina's (van-tot)57-80
Aantal pagina's24
TijdschriftFundamenta Informaticae
Nummer van het tijdschrift1-4
StatusGepubliceerd - 23 okt 2019


Duik in de onderzoeksthema's van 'Computational Intelligence for life sciences'. Samen vormen ze een unieke vingerafdruk.

Citeer dit