Computational Diffusion MRI: MICCAI Workshop on Computational Diffusion MRI, CDMRI 2016

A. Fuster, A. Ghosh, E. Kaden, Y. Rathi, M. Reisert

Onderzoeksoutput: Boek/rapportBoekredactieAcademicpeer review

Uittreksel

The proceedings contain 17 papers. The special focus in this conference is on Computational Diffusion MRI. The topics include: The MR physics of advanced diffusion imaging; noise floor removal via phase correction of complex diffusion-weighted images; regularized dictionary learning with robust sparsity fitting for compressed sensing multishell HARDI; denoising diffusion-weighted images using grouped iterative hard thresholding of multi-channel framelets; exploring diffusion time using signal sparsity; sensitivity of OGSE ActiveAx to microstructural dimensions on a clinical scanner; robust construction of diffusion MRI atlases with correction for inter-subject fiber dispersion; parcellation of human amygdala subfields using orientation distribution function and spectral K-means clustering; sparse representation for white matter fiber compression and calculation of inter-fiber similarity; an unsupervised group average cortical parcellation using diffusion MRI to probe cytoarchitecture; colocalization of functional activity and neurite density within cortical areas; comparison of biomarkers in transgenic Alzheimer rats using multi-shell diffusion MRI and working memory function in recent-onset schizophrenia patients associated with white matter microstructure.

Originele taal-2Engels
UitgeverijSpringer
Aantal pagina's209
VolumePart F2
ISBN van geprinte versie9783319541297
DOI's
StatusGepubliceerd - 2017
EvenementMICCAI Workshop on Computational Diffusion MRI, (CDMRI2016) - Athens, Griekenland
Duur: 17 okt 201621 okt 2016

Publicatie series

NaamMathematics and Visualization
VolumePart F2
ISSN van geprinte versie1612-3786
ISSN van elektronische versie2197-666X

Vingerafdruk

Magnetic resonance imaging
Fiber
Sparsity
Fibers
Working Memory
Memory Function
Spectral Clustering
Compressed sensing
Compressed Sensing
Sparse Representation
Atlas
K-means Clustering
Subfield
Biomarkers
Thresholding
Glossaries
Denoising
Scanner
Distribution functions
Rats

Citeer dit

Fuster, A., Ghosh, A., Kaden, E., Rathi, Y., & Reisert, M. (2017). Computational Diffusion MRI: MICCAI Workshop on Computational Diffusion MRI, CDMRI 2016. (Mathematics and Visualization; Vol. Part F2). Springer. https://doi.org/10.1007/978-3-319-54130-3
Fuster, A. ; Ghosh, A. ; Kaden, E. ; Rathi, Y. ; Reisert, M. / Computational Diffusion MRI : MICCAI Workshop on Computational Diffusion MRI, CDMRI 2016. Springer, 2017. 209 blz. (Mathematics and Visualization).
@book{683b249069474f5da479ae5cb4f71263,
title = "Computational Diffusion MRI: MICCAI Workshop on Computational Diffusion MRI, CDMRI 2016",
abstract = "The proceedings contain 17 papers. The special focus in this conference is on Computational Diffusion MRI. The topics include: The MR physics of advanced diffusion imaging; noise floor removal via phase correction of complex diffusion-weighted images; regularized dictionary learning with robust sparsity fitting for compressed sensing multishell HARDI; denoising diffusion-weighted images using grouped iterative hard thresholding of multi-channel framelets; exploring diffusion time using signal sparsity; sensitivity of OGSE ActiveAx to microstructural dimensions on a clinical scanner; robust construction of diffusion MRI atlases with correction for inter-subject fiber dispersion; parcellation of human amygdala subfields using orientation distribution function and spectral K-means clustering; sparse representation for white matter fiber compression and calculation of inter-fiber similarity; an unsupervised group average cortical parcellation using diffusion MRI to probe cytoarchitecture; colocalization of functional activity and neurite density within cortical areas; comparison of biomarkers in transgenic Alzheimer rats using multi-shell diffusion MRI and working memory function in recent-onset schizophrenia patients associated with white matter microstructure.",
author = "A. Fuster and A. Ghosh and E. Kaden and Y. Rathi and M. Reisert",
year = "2017",
doi = "10.1007/978-3-319-54130-3",
language = "English",
isbn = "9783319541297",
volume = "Part F2",
series = "Mathematics and Visualization",
publisher = "Springer",
address = "Germany",

}

Fuster, A, Ghosh, A, Kaden, E, Rathi, Y & Reisert, M 2017, Computational Diffusion MRI: MICCAI Workshop on Computational Diffusion MRI, CDMRI 2016. Mathematics and Visualization, vol. Part F2, vol. Part F2, Springer. https://doi.org/10.1007/978-3-319-54130-3

Computational Diffusion MRI : MICCAI Workshop on Computational Diffusion MRI, CDMRI 2016. / Fuster, A.; Ghosh, A.; Kaden, E.; Rathi, Y.; Reisert, M.

Springer, 2017. 209 blz. (Mathematics and Visualization; Vol. Part F2).

Onderzoeksoutput: Boek/rapportBoekredactieAcademicpeer review

TY - BOOK

T1 - Computational Diffusion MRI

T2 - MICCAI Workshop on Computational Diffusion MRI, CDMRI 2016

AU - Fuster, A.

AU - Ghosh, A.

AU - Kaden, E.

AU - Rathi, Y.

AU - Reisert, M.

PY - 2017

Y1 - 2017

N2 - The proceedings contain 17 papers. The special focus in this conference is on Computational Diffusion MRI. The topics include: The MR physics of advanced diffusion imaging; noise floor removal via phase correction of complex diffusion-weighted images; regularized dictionary learning with robust sparsity fitting for compressed sensing multishell HARDI; denoising diffusion-weighted images using grouped iterative hard thresholding of multi-channel framelets; exploring diffusion time using signal sparsity; sensitivity of OGSE ActiveAx to microstructural dimensions on a clinical scanner; robust construction of diffusion MRI atlases with correction for inter-subject fiber dispersion; parcellation of human amygdala subfields using orientation distribution function and spectral K-means clustering; sparse representation for white matter fiber compression and calculation of inter-fiber similarity; an unsupervised group average cortical parcellation using diffusion MRI to probe cytoarchitecture; colocalization of functional activity and neurite density within cortical areas; comparison of biomarkers in transgenic Alzheimer rats using multi-shell diffusion MRI and working memory function in recent-onset schizophrenia patients associated with white matter microstructure.

AB - The proceedings contain 17 papers. The special focus in this conference is on Computational Diffusion MRI. The topics include: The MR physics of advanced diffusion imaging; noise floor removal via phase correction of complex diffusion-weighted images; regularized dictionary learning with robust sparsity fitting for compressed sensing multishell HARDI; denoising diffusion-weighted images using grouped iterative hard thresholding of multi-channel framelets; exploring diffusion time using signal sparsity; sensitivity of OGSE ActiveAx to microstructural dimensions on a clinical scanner; robust construction of diffusion MRI atlases with correction for inter-subject fiber dispersion; parcellation of human amygdala subfields using orientation distribution function and spectral K-means clustering; sparse representation for white matter fiber compression and calculation of inter-fiber similarity; an unsupervised group average cortical parcellation using diffusion MRI to probe cytoarchitecture; colocalization of functional activity and neurite density within cortical areas; comparison of biomarkers in transgenic Alzheimer rats using multi-shell diffusion MRI and working memory function in recent-onset schizophrenia patients associated with white matter microstructure.

UR - http://www.scopus.com/inward/record.url?scp=85019757277&partnerID=8YFLogxK

U2 - 10.1007/978-3-319-54130-3

DO - 10.1007/978-3-319-54130-3

M3 - Book editing

SN - 9783319541297

VL - Part F2

T3 - Mathematics and Visualization

BT - Computational Diffusion MRI

PB - Springer

ER -

Fuster A, Ghosh A, Kaden E, Rathi Y, Reisert M. Computational Diffusion MRI: MICCAI Workshop on Computational Diffusion MRI, CDMRI 2016. Springer, 2017. 209 blz. (Mathematics and Visualization). https://doi.org/10.1007/978-3-319-54130-3