Computational complexity of discrete optimization problems

J.K. Lenstra, A.H.G. Rinnooy Kan

    Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

    234 Citaten (Scopus)
    9 Downloads (Pure)

    Samenvatting

    Recent developments in the theory of computational complexity as applied to combinatorial problems have revealed the existence of a large class of so-called NP-complete problems, either all or none of which are solvable in polynomial time. Since many infamous combinatorial problems have been proved to be NP-complete, the latter alternative seems far more likely. In that sense, NP-completeness of a problem justifies the use of enumerative optimization methods and of approximation algorithms. In this paper we give an informal introduction to the theory of NP-completeness and derive some fundamental results, in the hope of stimulating further use of this valuable analytical tooI.
    Originele taal-2Engels
    Pagina's (van-tot)121-140
    TijdschriftAnnals of Discrete Mathematics
    Volume4
    DOI's
    StatusGepubliceerd - 1979

    Vingerafdruk

    Duik in de onderzoeksthema's van 'Computational complexity of discrete optimization problems'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit