Computational analysis of the evolution of the brittle-to-ductile transition of tungsten under fusion conditions

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

1 Citaat (Scopus)

Samenvatting

Tungsten components inside fusion reactors are subjected to extreme conditions, including an exceptionally high heat flux. This loading induces high stress levels, that may lead to brittle fracture. The current work aims to provide novel insights by relating the risk for brittle fracture to the tungsten microstructure and loadings conditions. To this end, a crystal plasticity framework is adopted with a temperature dependent slip resistance. The required parameters are obtained from experimental data in the literature. The risk for brittle fracture is assessed by means of Beremin's weakest-link theory. The brittle-to-ductile transition temperature (BDTT) found in literature can be accurately described with the presented framework. The simulation results reveal that the BDTT decreases linearly with the volume fraction of recrystallized grains in the microstructure. It is also shown that a sharp interface between rolled and recrystallized microscopic grains is more favourable in terms of risk for brittle fracture.

Originele taal-2Engels
Artikelnummer015005
Aantal pagina's24
TijdschriftModelling and Simulation in Materials Science and Engineering
Volume29
Nummer van het tijdschrift1
DOI's
StatusGepubliceerd - jan 2021

Vingerafdruk Duik in de onderzoeksthema's van 'Computational analysis of the evolution of the brittle-to-ductile transition of tungsten under fusion conditions'. Samen vormen ze een unieke vingerafdruk.

Citeer dit