Computation of integral bases

J.H.P. Bauch

Onderzoeksoutput: Boek/rapportRapportAcademic

221 Downloads (Pure)

Samenvatting

Let $A$ be a Dedekind domain, $K$ the fraction field of $A$, and $f\in A[x]$ a monic irreducible separable polynomial. For a given non-zero prime ideal $\mathfrak{p}$ of $A$ we present in this paper a new method to compute a $\mathfrak{p}$-integral basis of the extension of $K$ determined by $f$. Our method is based on the use of simple multipliers that can be constructed with the data that occurs along the flow of the Montes Algorithm. Our construction of a $\mathfrak{p}$-integral basis is significantly faster than the similar approach from $[7]$ and provides in many cases a priori a triangular basis.
Originele taal-2Engels
Uitgeverijs.n.
Aantal pagina's23
StatusGepubliceerd - 2015

Publicatie series

NaamarXiv
Volume1507.04058 [math.NT]

Vingerafdruk

Duik in de onderzoeksthema's van 'Computation of integral bases'. Samen vormen ze een unieke vingerafdruk.

Citeer dit