Complexity reduction in MPC for stochastic max-plus-linear systems by variability expansion

T.J.J. Boom, van den, B. Schutter, de, B.F. Heidergott

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

3 Citaten (Scopus)

Samenvatting

Model predictive control (MPC) is a popular controller design technique in the process industry. Conventional MPC uses linear or nonlinear discrete-time models. Previously, we have extended MPC to a class of discrete event systems that can be described by a model that is "linear" in the max-plus algebra. In our previous work we have considered MPC for the perturbations-free case and for the case with noise and/or modeling errors in a bounded or stochastic setting. In this paper we consider a method to reduce the computational complexity of the resulting optimization problem, based on variability expansion. We show that the computational load is reduced if we decrease the level of 'randomness' in the system.
Originele taal-2Engels
TitelProceedings 41st IEEE Conference on Decision and Control (Las Vegas NV, USA, December 10-13, 2002)
UitgeverijInstitute of Electrical and Electronics Engineers
Pagina's3567-3572
ISBN van geprinte versie0-7803-7518-5
DOI's
StatusGepubliceerd - 2002

Vingerafdruk

Duik in de onderzoeksthema's van 'Complexity reduction in MPC for stochastic max-plus-linear systems by variability expansion'. Samen vormen ze een unieke vingerafdruk.

Citeer dit