Samenvatting
This paper considers the problem of complexity reduction for systems with affine parametric uncertainty. We are interested in the relation between model reduction for a nominal plant and dimension reduction for a parameter vector. By using linear fractional representations of the system, it is shown that a projection-based reduction approach can be applied separately to the generalized plant and the uncertainty block. The error bounds between the original system and its reduced order approximation are derived, and a case study is used to validate our findings.
Originele taal-2 | Engels |
---|---|
Titel | 2016 IEEE 55th Conference on Decision and Control, CDC 2016 |
Plaats van productie | Piscataway |
Uitgeverij | Institute of Electrical and Electronics Engineers |
Pagina's | 5769-5774 |
Aantal pagina's | 6 |
ISBN van elektronische versie | 978-1-5090-1837-6 |
ISBN van geprinte versie | 978-1-5090-1838-3 |
DOI's | |
Status | Gepubliceerd - 27 dec. 2016 |
Evenement | 2016 IEEE 55th Conference on Decision and Control (CDC) - Aria Resort and Casino, Las Vegas, Verenigde Staten van Amerika Duur: 12 dec. 2016 → 14 dec. 2016 Congresnummer: 55 http://cdc2016.ieeecss.org/ |
Congres
Congres | 2016 IEEE 55th Conference on Decision and Control (CDC) |
---|---|
Verkorte titel | CDC02016 |
Land/Regio | Verenigde Staten van Amerika |
Stad | Las Vegas |
Periode | 12/12/16 → 14/12/16 |
Internet adres |