Comparison of two adjoint equation approaches with respect to boundary-condition treatment for the quasi-1D Euler equations

G.F. Duivesteijn, H. Bijl, B. Koren, E.H. Brummelen, van

    Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

    2 Downloads (Pure)

    Samenvatting

    For computation of nonlinear aeroelastic problems, an efficient error estimation and grid adaptation algorithm is highly desirable, but traditional error estimation or grid adaptation do not suffice, since they are insufficiently related to relevant engineering variables and are incapable of significantly reducing the computing time. The dual formulation however, can be used as an a-posteriori error estimation in the quantity of interest. However, derivation of the dual problem, especially the accompanying boundary conditions, is not a trivial task. This document compares a discrete and analytical ad joint equation method with respect to boundary-condition treatments applied on the quasi-1D Euler equations. Flux evaluation of the primal problem is do ne by a Linearised Godunov scheme. For our future goal, solving ftuid-structure problems, the discrete approach seems preferable.
    Originele taal-2Engels
    TitelInternational Conference on Adaptive Modeling and Simulation, ADMOS 2003
    RedacteurenN.-E. Wiberg, P. Diez
    Plaats van productieBarcelona
    UitgeverijInternational Center for Numerical Methods in Engineering (CIMNE)
    Pagina's1-13
    StatusGepubliceerd - 2003

    Vingerafdruk Duik in de onderzoeksthema's van 'Comparison of two adjoint equation approaches with respect to boundary-condition treatment for the quasi-1D Euler equations'. Samen vormen ze een unieke vingerafdruk.

  • Citeer dit

    Duivesteijn, G. F., Bijl, H., Koren, B., & Brummelen, van, E. H. (2003). Comparison of two adjoint equation approaches with respect to boundary-condition treatment for the quasi-1D Euler equations. In N-E. Wiberg, & P. Diez (editors), International Conference on Adaptive Modeling and Simulation, ADMOS 2003 (blz. 1-13). International Center for Numerical Methods in Engineering (CIMNE).