Comparative study of deep learning methods for one-shot image classification (abstract)

J. van den Bogaert, H. Mohseni, Mahmoud Khodier, Yuliyan Stoyanov, D.C. Mocanu, V. Menkovski

Onderzoeksoutput: Bijdrage aan congresAbstractAcademic

210 Downloads (Pure)

Samenvatting

Training deep learning models for images classification requires large amount of labeled data to overcome the challenges of overfitting and underfitting. Usually, in many practical applications, these labeled data are not available. In an attempt to solve this problem, the one-shot learning paradigm tries to create machine learning models capable to learn well from one or (maximum) few labeled examples per class. To understand better the behavior of various deep learning models and approaches for one-shot learning, in this abstract, we perform a comparative study of the most used ones, on a challenging real-world dataset, i.e Fashion-MNIST.
Originele taal-2Engels
StatusGepubliceerd - 1 dec 2017
EvenementDutch-Belgian Database Day 2017 (DBDBD 2017) - Eindhoven, Nederland
Duur: 1 dec 20171 dec 2017

Workshop

WorkshopDutch-Belgian Database Day 2017 (DBDBD 2017)
LandNederland
StadEindhoven
Periode1/12/171/12/17

    Vingerafdruk

Citeer dit

van den Bogaert, J., Mohseni, H., Khodier, M., Stoyanov, Y., Mocanu, D. C., & Menkovski, V. (2017). Comparative study of deep learning methods for one-shot image classification (abstract). Abstract van Dutch-Belgian Database Day 2017 (DBDBD 2017), Eindhoven, Nederland.