Combinatorial and geometric properties of planar Laman graphs

S.G. Kobourov, T. Ueckerdt, K.A.B. Verbeek

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

15 Citaten (Scopus)


Laman graphs naturally arise in structural mechanics and rigidity theory. Specifically, they characterize minimally rigid planar bar-and-joint systems which are frequently needed in robotics, as well as in molecular chemistry and polymer physics. We introduce three new combinatorial structures for planar Laman graphs: angular structures, angle labelings, and edge labelings. The latter two structures are related to Schnyder realizers for maximally planar graphs. We prove that planar Laman graphs are exactly the class of graphs that have an angular structure that is a tree, called angular tree, and that every angular tree has a corresponding angle labeling and edge labeling. Using a combination of these powerful combinatorial structures, we show that every planar Laman graph has an L-contact representation, that is, planar Laman graphs are contact graphs of axis-aligned L-shapes. Moreover, we show that planar Laman graphs and their subgraphs are the only graphs that can be represented this way. We present efficient algorithms that compute, for every planar Laman graph G, an angular tree, angle labeling, edge labeling, and finally an L-contact representation of G. The overall running time is O(n^2), where n is the number of vertices of G, and the L-contact representation is realized on the n x n grid.
Originele taal-2Engels
Titel24th Annual ACM-SIAM Symposium on Discrete Systems (SODA'13, New Orleans LA, USA, January 6-8, 2013)
Plaats van productiePhiladelphia PA
UitgeverijSociety for Industrial and Applied Mathematics (SIAM)
ISBN van geprinte versie978-1-61197-251-1
StatusGepubliceerd - 2013

Vingerafdruk Duik in de onderzoeksthema's van 'Combinatorial and geometric properties of planar Laman graphs'. Samen vormen ze een unieke vingerafdruk.

Citeer dit