Colloidal asphaltene deposition and aggregation in capillary flow: Experiments and mesoscopic simulation

E.S. Boek, H.K. Ladva, J.P. Crawshaw, J.T. Padding

    Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

    1 Citaat (Scopus)

    Samenvatting

    The aggregation and deposition of colloidal asphaltene in reservoir rock is a significant problem in the oil industry. To obtain a fundamental understanding of this phenomenon, we have studied the deposition and aggregation of colloidal asphaltene in capillary flow by experiment and simulation. For the simulation, we have used the stochastic rotation dynamics (SRD) method, in which the solvent hydrodynamic emerges from the collisions between the solvent particles, while the Brownian motion emerges naturally from the interactions between the colloidal asphaltene particles and the solvent. The asphaltene colloids interact through a screened Coulomb potential. We vary the well depth e¿ and the flow rate v to obtain Peflow»1 (hydrodynamic interactions dominate) and Re«1 (Stokes flow). In the simulations, we impose a pressure drop over the capillary length and measure the corresponding solvent flow rate. We observe that the transient solvent flow rate decreases when the asphaltene particles become more "sticky". For a well depth e¿=2kBT, a monolayer deposits on the capillary wall. With an increasing well depth, the capillary becomes totally blocked. The clogging is transient for e¿=5kBT, but appears to be permanent for e¿=10-20kBT. We compare our simulation results with flow experiments in glass capillaries, where we use extracted asphaltenes in toluene, reprecipitated with n-heptane. In the experiments, the dynamics of asphaltene precipitation and deposition were monitored in a slot capillary using optical microscopy under flow conditions similar to those used in the simulation. Maintaining a constant flow rate of 5µLmin-1, we found that the pressure drop across the capillary first increased slowly, followed by a sharp increase, corresponding to a complete local blockage of the capillary. Doubling the flow rate to 10µLmin-1, we observe that the initial deposition occurs faster but the deposits are subsequently entrained by the flow. We calculate the change in the dimensionless permeability as a function of time for both experiment and simulation. By matching the experimental and simulation results, we obtain information about (1) the interaction potential well depth for the particular asphaltenes used in the experiments and (2) the flow conditions associated with the asphaltene deposition process. © 2008 American Institute of Physics.
    Originele taal-2Engels
    Titel15th International Congress on Rheology. Proceedings of the 80th Annual Meeting
    Plaats van productieMonterey, CA
    Pagina's273-275
    DOI's
    StatusGepubliceerd - 2008

    Publicatie series

    NaamAIP Conference Proceedings
    Volume1027
    ISSN van geprinte versie0094-243X

    Vingerafdruk Duik in de onderzoeksthema's van 'Colloidal asphaltene deposition and aggregation in capillary flow: Experiments and mesoscopic simulation'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit