Collaborative learning for classification and prediction of building energy flexibility

Anil Kumar, Elena Mocanu, Muhammad Babar, Phuong Nguyen

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

5 Citaten (Scopus)
20 Downloads (Pure)

Samenvatting

In this paper we propose an simple digital learning platform for flexible energy detection using data with fine granularity. The platform is empowered with artificially intelligent methods aiming to quantify the uncertainty of building energy consumption at building level, as well as at the aggregated level. Two major learning tasks are perform in this context: prediction and classification. Firstly, the building energy prediction with various time steps resolution are perform using methods such as Fully Connected Neural Networks (FCNN), Long short-term memory (LSTM), and Decision Trees (DT). Secondly, a Support Vector Machine (SVM) method is used to unlock the building energy flexibility by performing classification assuming three different levels of flexibility. Further on, a collaborative task is integrate within the platform to improve the multi-class classification accuracy. Through the end, we argue that this approach can be considered a solid integrated and automated basic block able to incorporate future AI models in (near) real-time to explore the benefits at the synergy between built environment and emerging smart grid technologies and applications.
Originele taal-2Engels
TitelProceedings of 2019 IEEE PES Innovative Smart Grid Technologies Europe, ISGT-Europe 2019
Plaats van productiePiscataway
UitgeverijIEEE Press
Aantal pagina's5
ISBN van elektronische versie978-1-5386-8218-0
DOI's
StatusGepubliceerd - sep. 2019
Evenement9th IEEE PES Innovative Smart Grid Technologies Conference Europe, ISGT Europe 2019 - University POLITEHNICA, Bucharest, Romania, Bucharest, Roemenië
Duur: 29 sep. 20192 okt. 2019
Congresnummer: 9
http://sites.ieee.org/isgt-europe-2019/

Congres

Congres9th IEEE PES Innovative Smart Grid Technologies Conference Europe, ISGT Europe 2019
Verkorte titelISGT Europe 2019
Land/RegioRoemenië
StadBucharest
Periode29/09/192/10/19
Internet adres

Vingerafdruk

Duik in de onderzoeksthema's van 'Collaborative learning for classification and prediction of building energy flexibility'. Samen vormen ze een unieke vingerafdruk.

Citeer dit