Codebook-based Bayesian speech enhancement for nonstationary environments

S. Srinivasan, J. Samuelsson, W.B. Kleijn

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

116 Citaten (Scopus)
211 Downloads (Pure)


In this paper, we propose a Bayesian minimum mean squared error approach for the joint estimation of the short-term predictor parameters of speech and noise, from the noisy observation. We use trained codebooks of speech and noise linear predictive coefficients to model the a priori information required by the Bayesian scheme. In contrast to current Bayesian estimation approaches that consider the excitation variances as part of the a priori information, in the proposed method they are computed online for each short-time segment, based on the observation at hand. Consequently, the method performs well in nonstationary noise conditions. The resulting estimates of the speech and noise spectra can be used in a Wiener filter or any state-of-the-art speech enhancement system. We develop both memoryless (using information from the current frame alone) and memory-based (using information from the current and previous frames) estimators. Estimation of functions of the short-term predictor parameters is also addressed, in particular one that leads to the minimum mean squared error estimate of the clean speech signal. Experiments indicate that the scheme proposed in this paper performs significantly better than competing methods
Originele taal-2Engels
Pagina's (van-tot)441-452
Aantal pagina's12
TijdschriftIEEE Transactions on Audio, Speech, and Language Processing
Nummer van het tijdschrift2
StatusGepubliceerd - 2007


Duik in de onderzoeksthema's van 'Codebook-based Bayesian speech enhancement for nonstationary environments'. Samen vormen ze een unieke vingerafdruk.

Citeer dit