CNNs vs. Transformers: Performance and Robustness in Endoscopic Image Analysis

Koen Kusters, Tim Boers, Tim J.M. Jaspers, Jelmer B. Jukema, Martijn R. Jong, Kiki N. Fockens, Albert J. (Jeroen) de Groof, Jacques J.G.H.M. Bergman, Fons van der Sommen, Peter H.N. de With

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

1 Citaat (Scopus)

Samenvatting

In endoscopy, imaging conditions are often challenging due to organ movement, user dependence, fluctuations in video quality and real-time processing, which pose requirements on the performance, robustness and complexity of computer-based analysis techniques. This paper poses the question whether Transformer-based architectures, which are capable to directly capture global contextual information, can handle the aforementioned endoscopic conditions and even outperform the established Convolutional Neural Networks (CNNs) for this task. To this end, we evaluate and compare clinically relevant performance and robustness of CNNs and Transformers for neoplasia detection in Barrett’s esophagus. We have selected several top performing CNN and Transformers on endoscopic benchmarks, which we have trained and validated on a total of 10,208 images (2,079 patients), and tested on a total of 4,661 images (743 patients), divided over a high-quality test set and three different robustness test sets. Our results show that Transformers generally perform better on classification and segmentation for the high-quality challenging test set, and show on-par or increased robustness to various clinically relevant input data variations, while requiring comparable model complexity. This robustness against challenging video-related conditions and equipment variations over the hospitals is an essential trait for adoption in clinical practice. The code is made publicly available at: https://github.com/BONS-AI-VCA-AMC/Endoscopy-CNNs-vs-Transformers.
Originele taal-2Engels
TitelApplications of Medical Artificial Intelligence
SubtitelSecond International Workshop, AMAI 2023, Held in Conjunction with MICCAI 2023, Vancouver, BC, Canada, October 8, 2023, Proceedings
RedacteurenShandong Wu, Behrouz Shabestari, Lei Xing
Plaats van productieCham
UitgeverijSpringer
Pagina's21-31
Aantal pagina's11
ISBN van elektronische versie978-3-031-47076-9
ISBN van geprinte versie978-3-031-47075-2
DOI's
StatusGepubliceerd - 25 okt. 2023
Evenement26th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2023 - Vancouver Convention Centre Canada, Vancouver, Canada
Duur: 8 okt. 202312 okt. 2023
Congresnummer: 26
https://conferences.miccai.org/2023/en/
https://switchmiccai.github.io/switch/

Publicatie series

NaamLecture Notes in Computer Science
Volume14313 LNCS
ISSN van geprinte versie0302-9743
ISSN van elektronische versie1611-3349

Congres

Congres26th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2023
Verkorte titelMICCAI
Land/RegioCanada
StadVancouver
Periode8/10/2312/10/23
Internet adres

Vingerafdruk

Duik in de onderzoeksthema's van 'CNNs vs. Transformers: Performance and Robustness in Endoscopic Image Analysis'. Samen vormen ze een unieke vingerafdruk.

Citeer dit