Clustering spectrum of scale-free networks

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

8 Citaten (Scopus)
97 Downloads (Pure)


Real-world networks often have power-law degrees and scale-free properties, such as ultrasmall distances and ultrafast information spreading. In this paper, we study a third universal property: three-point correlations that suppress the creation of triangles and signal the presence of hierarchy. We quantify this property in terms of c(k), the probability that two neighbors of a degree-k node are neighbors themselves. We investigate how the clustering spectrum k↦c(k) scales with k in the hidden-variable model and show that c(k) follows a universal curve that consists of three k ranges where c(k) remains flat, starts declining, and eventually settles on a power-law c(k)∼k^α with α depending on the power law of the degree distribution. We test these results against ten contemporary real-world networks and explain analytically why the universal curve properties only reveal themselves in large networks.
Originele taal-2Engels
Aantal pagina's15
TijdschriftPhysical Review E
Nummer van het tijdschrift4
StatusGepubliceerd - 26 okt 2017

Vingerafdruk Duik in de onderzoeksthema's van 'Clustering spectrum of scale-free networks'. Samen vormen ze een unieke vingerafdruk.

Citeer dit