Clustering in Polygonal Domains

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

Samenvatting

We study various clustering problems for a set D of n points in a polygonal domain P under the geodesic distance. We start by studying the discrete k-median problem for D in P. We develop an exact algorithm which runs in time poly(n, m) + n O (√k ), where m is the complexity of the domain. Subsequently, we show that our approach can also be applied to solve the k-center problem with z outliers in the same running time. Next, we turn our attention to approximation algorithms. In particular, we study the k-center problem in a simple polygon and show how to obtain a (1 + ε)-approximation algorithm which runs in time 2 O(k log k/ε )(nlog m + m). To obtain this, we demonstrate that a previous approach by Bădoiu et al. [5, 4] that works in R d, carries over to the setting of simple polygons. Finally, we study the 1-center problem in a simple polygon in the presence of z outliers. We show that a coreset C of size O(z) exists, such that the 1-center of C is a 3-approximation of the 1-center of D, when z outliers are allowed. This result is actually more general and carries over to any metric space, which to the best of our knowledge was not known so far. By extending this approach, we show that for the 1-center problem under the Euclidean metric in R 2, there exists an ε-coreset of size O(z/ε).

Originele taal-2Engels
Titel34th International Symposium on Algorithms and Computation (ISAAC 2023)
RedacteurenSatoru Iwata, Naonori Kakimura
UitgeverijLeibniz-Zentrum für Informatik
Pagina's23:1-23:15
Aantal pagina's15
ISBN van elektronische versie9783959772891
DOI's
StatusGepubliceerd - dec. 2023

Publicatie series

NaamLeibniz International Proceedings in Informatics (LIPIcs)
Volume283

Financiering

Funding MdB and LT are supported by the Dutch Research Council (NWO) through Gravitation-grant NETWORKS-024.002.003.

FinanciersFinanciernummer
Nederlandse Organisatie voor Wetenschappelijk OnderzoekNETWORKS-024.002.003

    Vingerafdruk

    Duik in de onderzoeksthema's van 'Clustering in Polygonal Domains'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit