Closed-loop performance diagnosis using prediction error identification

A. Mesbah, X. Bombois, J.H.A. Ludlage, P.M.J. Hof, Van den

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

5 Citaten (Scopus)

Samenvatting

This paper presents a methodology to detect the origin of closed-loop performance degradation of model-based control systems. The approach exploits the statistical hypothesis testing framework. The decision rule consists of examining if an identified model of the true system lies in a set containing all models that fulfill the closed-loop performance requirements. This allows us to determine whether performance degradation arises from changes in system dynamics or from variations in disturbance characteristics. The probability of making an erroneous decision is estimated a posteriori using the known distribution of the identified model with respect to the unknown true system.
Originele taal-2Engels
TitelProceedings of the 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), December 12-15, 2011, Orlando, Florida
Plaats van productiePiscataway
UitgeverijInstitute of Electrical and Electronics Engineers
Pagina's2969-2974
Aantal pagina's6
ISBN van elektronische versie978-1-61284-801-3
ISBN van geprinte versie978-1-61284-800-6
DOI's
StatusGepubliceerd - 2011
Evenement50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC 2011) - Hilton Orlando Bonnet Creek, Orlando, FL, Verenigde Staten van Amerika
Duur: 12 dec 201115 dec 2011
Congresnummer: 50
http://www.ieeecss.org/CAB/conferences/cdcecc2011/

Congres

Congres50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC 2011)
Verkorte titelCDC-ECC 2011
Land/RegioVerenigde Staten van Amerika
StadOrlando, FL
Periode12/12/1115/12/11
Ander50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC11)
Internet adres

Vingerafdruk

Duik in de onderzoeksthema's van 'Closed-loop performance diagnosis using prediction error identification'. Samen vormen ze een unieke vingerafdruk.

Citeer dit