Classification with the CTW algorithm

Hongming Yang, M.L.A. Stassen, T.J. Tjalkens

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

Samenvatting

In this paper, we provide a unified view of generative classification and sequence probability estimation. The context-tree weighting (CTW) algorithm, which was originally proposed as an optimum universal source coding algorithm, is thus ex tended to the field of pattern recognition. While focusing on binary classification problems in this paper, we propose single tree and multiple tree CT’~V classifiers, and derive decision criteria for both classifiers. A few ad-hoc approaches to order the features in a single tree and divide the features into different trees are pre sented. As an example in our numerical study, we consider spain email filtering problem. Numerical results show that the approaches proposed in this paper clearly outperforms the naive Bayes classifier, which is a conventional generative classifier.
Originele taal-2Engels
TitelProceedings of the 28th Symposium on Information Theory in the Benelux, 24-25 May 2007, Enschede, The Netherlands
RedacteurenH. Cronie, H. Hoeksema, R. Veldhuis, F. Hoeksema
Plaats van productieEnschede
UitgeverijUniversiteit Twente
Pagina's321-328
ISBN van geprinte versie90-365-2509-1
StatusGepubliceerd - 2007
Evenementconference; 28th Symposium on Information Theory in the Benelux, Enschede, The Netherlands; 2007-05-24; 2007-05-25 -
Duur: 24 mei 200725 mei 2007

Congres

Congresconference; 28th Symposium on Information Theory in the Benelux, Enschede, The Netherlands; 2007-05-24; 2007-05-25
Periode24/05/0725/05/07
Ander28th Symposium on Information Theory in the Benelux, Enschede, The Netherlands

Vingerafdruk

Duik in de onderzoeksthema's van 'Classification with the CTW algorithm'. Samen vormen ze een unieke vingerafdruk.

Citeer dit