Classical and quantum convolutional codes derived from algebraic geometry codes

Francisco Fernandes Pereira (Corresponding author), Giuliano Gadioli La Guardia, Francisco Marcos de Assis

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

Samenvatting

In this paper, we construct new families of classical convolutional codes (CCC's) and new families of quantum convolutional codes (QCC's). The CCC's are derived from (block) algebraic geometry (AG) codes. Furthermore, new families of CCC's are constructed by applying the techniques of puncturing, extending, expanding, and by the direct product code construction applied to AG codes. In addition, utilizing the new CCC's constructed here, we obtain new families of QCC's. The parameters of these new codes are good. More precisely, in the classical case, a family of almost near maximum distance separable (MDS) codes is presented; in the quantum case, we construct a family of MDS (optimal) quantum convolutional codes.
Originele taal-2Engels
Artikelnummer8490857
Pagina's (van-tot)73-82
Aantal pagina's10
TijdschriftIEEE Transactions on Communications
Volume67
Nummer van het tijdschrift1
DOI's
StatusGepubliceerd - jan 2019

Vingerafdruk Duik in de onderzoeksthema's van 'Classical and quantum convolutional codes derived from algebraic geometry codes'. Samen vormen ze een unieke vingerafdruk.

  • Citeer dit