Chemisorption of H2O and CO2 on hydrotalcites for sorptionenhanced water-gas-shift processes

K.T. Coenen, F. Gallucci, P. Cobden, E van Dijk, E.J.M. Hensen, M. van Sint Annaland

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

5 Citaten (Scopus)
98 Downloads (Pure)


Thermogravimetric analysis and breakthrough experiments in a packed bed reactor were used to validate a developed adsorption model to describe the cyclic working capacity of CO2 and H2O on a potassium-promoted hydrotalcite, a very promising adsorbent for sorption-enhanced water-gas-shift applications. Four different adsorption sites (two sites for CO2, one site for H2O and one equilibrium site for both species) were required to describe the mass changes observed in the TGA experiments. The TGA experiments were carried out at operating temperatures between 300 and 500 °C, while the total pressure in the reactor was kept at atmospheric pressure. Cyclic working capacities for different sites and the influence of the operating conditions on the cyclic working capacity were studied using the developed model. A higher operating temperature leads to a significant increase in the cyclic working capacity of the sorbent for CO2 attributed to the increase in the desorption kinetics for CO2. The model was successfully validated with experiments in a packed bed reactor at different operating temperatures.
Originele taal-2Engels
Pagina's (van-tot)2228 – 2242
Aantal pagina's15
TijdschriftEnergy Procedia
StatusGepubliceerd - 2017
Evenement13th International Conference on Greenhouse Gas Control Technologies, (GHGT-13) - Lausanne, Zwitserland
Duur: 14 nov 201618 nov 2016

Vingerafdruk Duik in de onderzoeksthema's van 'Chemisorption of H2O and CO2 on hydrotalcites for sorptionenhanced water-gas-shift processes'. Samen vormen ze een unieke vingerafdruk.

Citeer dit