Chemical language models for de novo drug design: Challenges and opportunities

Francesca Grisoni (Corresponding author)

Onderzoeksoutput: Bijdrage aan tijdschriftArtikel recenserenpeer review

31 Citaten (Scopus)
297 Downloads (Pure)

Samenvatting

Generative deep learning is accelerating de novo drug design, by allowing the generation of molecules with desired properties on demand. Chemical language models – which generate new molecules in the form of strings using deep learning – have been particularly successful in this endeavour. Thanks to advances in natural language processing methods and interdisciplinary collaborations, chemical language models are expected to become increasingly relevant in drug discovery. This minireview provides an overview of the current state-of-the-art of chemical language models for de novo design, and analyses current limitations, challenges, and advantages. Finally, a perspective on future opportunities is provided.

Originele taal-2Engels
Artikelnummer102527
Aantal pagina's9
TijdschriftCurrent Opinion in Structural Biology
Volume79
DOI's
StatusGepubliceerd - apr. 2023

Bibliografische nota

Publisher Copyright:
© 2023 The Author(s)

Vingerafdruk

Duik in de onderzoeksthema's van 'Chemical language models for de novo drug design: Challenges and opportunities'. Samen vormen ze een unieke vingerafdruk.

Citeer dit