Characterizing nonlinear piezoelectric dynamics through deep neural operator learning

Abhishek Chandra (Corresponding author), Taniya Kapoor, Mitrofan Curti, Koen Tiels, Elena A. Lomonova

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

17 Downloads (Pure)

Samenvatting

Nonlinear hysteresis modeling is essential for estimating, controlling, and characterizing the behavior of piezoelectric material-based devices. However, current deep-learning approaches face challenges in generalizing effectively to previously unseen voltage profiles. This Letter tackles the limitation of generalization by introducing the notion of neural operators for modeling the nonlinear constitutive laws governing inverse piezoelectric hysteresis, specifically focusing on the relationship between voltage inputs and displacement responses. The study utilizes two neural operators—Fourier neural operator and the deep operator network—to predict material responses to unseen voltage profiles that are not part of the training data. Numerical experiments, including butterfly-shaped hysteresis curves, show that in accuracy and generalization to unseen voltage profiles, neural operators outperform traditional recurrent neural network-based models, including conventional gated networks. The findings highlight the potential of neural operators for modeling hysteresis in piezoelectric materials, offering advantages over existing methods in varying voltage scenarios.
Originele taal-2Engels
Artikelnummer262902
Aantal pagina's6
TijdschriftApplied Physics Letters
Volume125
Nummer van het tijdschrift26
DOI's
StatusGepubliceerd - 23 dec. 2024

Vingerafdruk

Duik in de onderzoeksthema's van 'Characterizing nonlinear piezoelectric dynamics through deep neural operator learning'. Samen vormen ze een unieke vingerafdruk.

Citeer dit