CAVE: Cerebral artery-vein segmentation in digital subtraction angiography

Ruisheng Su (Corresponding author), P Matthijs van der Sluijs, Yuan Chen, Sandra Cornelissen, Ruben van den Broek, Wim H van Zwam, Aad van der Lugt, Wiro J Niessen, Danny Ruijters, Theo van Walsum

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

4 Citaten (Scopus)

Samenvatting

Cerebral X-ray digital subtraction angiography (DSA) is a widely used imaging technique in patients with neurovascular disease, allowing for vessel and flow visualization with high spatio-temporal resolution. Automatic artery-vein segmentation in DSA plays a fundamental role in vascular analysis with quantitative biomarker extraction, facilitating a wide range of clinical applications. The widely adopted U-Net applied on static DSA frames often struggles with disentangling vessels from subtraction artifacts. Further, it falls short in effectively separating arteries and veins as it disregards the temporal perspectives inherent in DSA. To address these limitations, we propose to simultaneously leverage spatial vasculature and temporal cerebral flow characteristics to segment arteries and veins in DSA. The proposed network, coined CAVE, encodes a 2D+time DSA series using spatial modules, aggregates all the features using temporal modules, and decodes it into 2D segmentation maps. On a large multi-center clinical dataset, CAVE achieves a vessel segmentation Dice of 0.84 (±0.04) and an artery-vein segmentation Dice of 0.79 (±0.06). CAVE surpasses traditional Frangi-based k-means clustering (P < 0.001) and U-Net (P < 0.001) by a significant margin, demonstrating the advantages of harvesting spatio-temporal features. This study represents the first investigation into automatic artery-vein segmentation in DSA using deep learning. The code is publicly available at https://github.com/RuishengSu/CAVE_DSA.

Originele taal-2Engels
Artikelnummer102392
Aantal pagina's10
TijdschriftComputerized Medical Imaging and Graphics
Volume115
DOI's
StatusGepubliceerd - jul. 2024
Extern gepubliceerdJa

Bibliografische nota

Copyright © 2024 The Author(s). Published by Elsevier Ltd.. All rights reserved.

Financiering

We want to thank the MR CLEAN Registry investigators for their contributions. The MR CLEAN Registry was funded and carried out by the Erasmus University Medical Centre, Amsterdam University Medical Centers, location AMC, and Maastricht University Medical Centre. The study was additionally funded by the Applied Scientific Institute for Neuromodulation (Toegepast Wetenschappelijk Instituut voor Neuromodulatie).

FinanciersFinanciernummer
Erasmus Medical Center
Maastricht University Medical Center

    Vingerafdruk

    Duik in de onderzoeksthema's van 'CAVE: Cerebral artery-vein segmentation in digital subtraction angiography'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit