Catheter detection in 3D ultrasound using triplanar-based convolutional neural networks

Hongxu Yang, Caifeng Shan, Alexander F. Kolen, Peter H.N. De With

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

17 Citaten (Scopus)

Samenvatting

3D Ultrasound (US) image-based catheter detection can potentially decrease the cost on extra equipment and training. Meanwhile, accurate catheter detection enables to decrease the operation duration and improves its outcome. In this paper, we propose a catheter detection method based on convolutional neural networks (CNNs) in 3D US. Voxels in US images are classified as catheter (or not) using triplanar-based CNNs. Our proposed CNN employs two-stage training with weighted loss function, which can cope with highly imbalanced training data and improves classification accuracy. When compared to state-of-the-art handcrafted features on ex-vivo datasets, our proposed method improves the F2-score with at least 31%. Based on classified volumes, the catheters are localized with an average position error of smaller than 3 voxels in the examined datasets, indicating that catheters are always detected in noisy and low-resolution images.

Originele taal-2Engels
Titel2018 IEEE International Conference on Image Processing, ICIP 2018 - Proceedings
UitgeverijIEEE Computer Society
Pagina's371-375
Aantal pagina's5
ISBN van elektronische versie9781479970612
DOI's
StatusGepubliceerd - 29 aug. 2018
Evenement25th IEEE International Conference on Image Processing, ICIP 2018 - Megaron Athens International Conference Centre, Athens, Griekenland
Duur: 7 okt. 201810 okt. 2018
Congresnummer: 25
http://athenscvb.gr/en/content/25-international-conference-image-processing-icip-2018

Congres

Congres25th IEEE International Conference on Image Processing, ICIP 2018
Verkorte titelICIP 2018
Land/RegioGriekenland
StadAthens
Periode7/10/1810/10/18
Internet adres

Vingerafdruk

Duik in de onderzoeksthema's van 'Catheter detection in 3D ultrasound using triplanar-based convolutional neural networks'. Samen vormen ze een unieke vingerafdruk.

Citeer dit