Cardiac MR Image Segmentation and Quality Control in the Presence of Respiratory Motion Artifacts Using Simulated Data

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

1 Citaat (Scopus)

Samenvatting

In this work, we propose solutions for the two tasks of the CMRxMotion challenge; 1) quality control and 2) image segmentation in the presence of respiratory motion artifacts. We develop a k-space based motion simulation approach to generate cardiac MR images with respiratory motion artifacts on open-source artifact-free data to handle data scarcity. For task 1, a motion-denoising auto-encoder is trained to reconstruct motion-free images from the pairs of images with and without simulated motion. The encoder part of the auto-encoder is used as a feature extractor for a fully-connected classifier. For task 2, an ensemble of modified 2D nn-Unet models is proposed to tackle different aspects of variations in the data with the purpose of improving the robustness of the model to images hampered by respiratory motion artifacts. All proposed models in this paper are trained using the images with simulated motion artifacts. The proposed quality control model achieves a classification accuracy of 0.75 with the Cohen’s kappa coefficient of 0.64 and the ensemble model obtains the mean Dice scores of 0.922, 0.829, and 0.910 respectively for the left ventricle, myocardium, and right ventricle segmentation on the validation set of the CMRxMotion challenge.

Originele taal-2Engels
TitelStatistical Atlases and Computational Models of the Heart. Regular and CMRxMotion Challenge Papers
Subtitel13th International Workshop, STACOM 2022, Held in Conjunction with MICCAI 2022, Singapore, September 18, 2022, Revised Selected Papers
RedacteurenOscar Camara, Esther Puyol-Antón, Avan Suinesiaputra, Alistair Young, Chen Qin, Maxime Sermesant, Shuo Wang
Plaats van productieCham
UitgeverijSpringer
Hoofdstuk44
Pagina's466-475
Aantal pagina's10
ISBN van elektronische versie978-3-031-23443-9
ISBN van geprinte versie978-3-031-23442-2
DOI's
StatusGepubliceerd - 2022
Evenement13th International Workshop on Statistical Atlases and Computational Models of the Heart, STACOM 2022, held in conjunction with the 25th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2022 - Singapore, Singapore
Duur: 18 sep. 202218 sep. 2022

Publicatie series

NaamLecture Notes in Computer Science (LNCS)
Volume13593
ISSN van geprinte versie0302-9743
ISSN van elektronische versie1611-3349

Congres

Congres13th International Workshop on Statistical Atlases and Computational Models of the Heart, STACOM 2022, held in conjunction with the 25th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2022
Land/RegioSingapore
StadSingapore
Periode18/09/2218/09/22

Bibliografische nota

Funding Information:
Acknowledgments. This research is a part of the openGTN project, supported by the European Union in the Marie Curie Innovative Training Networks (ITN) fellowship program under project No. 764465.

Financiering

Acknowledgments. This research is a part of the openGTN project, supported by the European Union in the Marie Curie Innovative Training Networks (ITN) fellowship program under project No. 764465.

Vingerafdruk

Duik in de onderzoeksthema's van 'Cardiac MR Image Segmentation and Quality Control in the Presence of Respiratory Motion Artifacts Using Simulated Data'. Samen vormen ze een unieke vingerafdruk.

Citeer dit