Samenvatting
To what extent can Variational Autoencoders (VAEs) identify semantically meaningful latent variables? Can they at least capture the correct topology if ground-truth latent variables are known? To investigate these questions, we introduce the Diffusion VAE, which allows for arbitrary (closed) manifolds in latent space. A Diffusion VAE uses transition kernels of Brownian motion on the manifold. In particular, it uses properties of the Brownian motion to implement the reparametrization trick and fast approximations to the KL divergence. We show that the Diffusion Variational Autoencoder is indeed capable of capturing topological properties.
Originele taal-2 | Engels |
---|---|
Status | Gepubliceerd - 2019 |
Evenement | NeurIPS 2019 Workshop - Vancouver Convention Center, Vancouver, Canada Duur: 13 dec. 2019 → 13 dec. 2019 |
Congres
Congres | NeurIPS 2019 Workshop |
---|---|
Land/Regio | Canada |
Stad | Vancouver |
Periode | 13/12/19 → 13/12/19 |