Calibrated Adversarial Training

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

3 Citaten (Scopus)
13 Downloads (Pure)

Samenvatting

Adversarial training is an approach of increasing the robustness of models to adversarial attacks by including adversarial examples in the training set. One major challenge of producing adversarial examples is to contain sufficient perturbation in the example to flip the model's output while not making severe changes in the example's semantical content. Exuberant change in the semantical content could also change the true label of the example. Adding such examples to the training set results in adverse effects. In this paper, we present the Calibrated Adversarial Training, a method that reduces the adverse effects of semantic perturbations in adversarial training. The method produces pixel-level adaptations to the perturbations based on novel calibrated robust error. We provide theoretical analysis on the calibrated robust error and derive an upper bound for it. Our empirical results show a superior performance of the Calibrated Adversarial Training over a number of public datasets.

Originele taal-2Engels
TitelProceedings of The 13th Asian Conference on Machine Learning
UitgeverijPMLR
Pagina's626-641
Aantal pagina's16
StatusGepubliceerd - 2021
Evenement13th Asian Conference on Machine Learning, ACML 2021 - Virtual, Online
Duur: 17 nov. 202119 nov. 2021

Publicatie series

NaamProceedings of Machine Learning Research
Volume157
ISSN van geprinte versie2640-3498

Congres

Congres13th Asian Conference on Machine Learning, ACML 2021
StadVirtual, Online
Periode17/11/2119/11/21

Vingerafdruk

Duik in de onderzoeksthema's van 'Calibrated Adversarial Training'. Samen vormen ze een unieke vingerafdruk.

Citeer dit