Bus travel time prediction based on deep belief network with back-propagation

Chao Chen, Hui Wang, Fang Yuan, Huizhong Jia, Baozhen Yao (Corresponding author)

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

3 Citaten (Scopus)


In an intelligent transportation system, accurate bus information is vital for passengers to schedule their departure time and make reasonable route choice. In this paper, an improved deep belief network (DBN) is proposed to predict the bus travel time. By using Gaussian–Bernoulli restricted Boltzmann machines to construct a DBN, we update the classical DBN to model continuous data. In addition, a back-propagation (BP) neural network is further applied to improve the performance. Based on the real traffic data collected in Shenyang, China, several experiments are conducted to validate the technique. Comparison with typical forecasting methods such as k-nearest neighbor algorithm (k-NN), artificial neural network (ANN), support vector machine (SVM) and random forests (RFs) shows that the proposed method is applicable to the prediction of bus travel time and works better than traditional methods.
Originele taal-2Engels
Pagina's (van-tot)10435–10449
Aantal pagina's15
TijdschriftNeural Computing and Applications
Nummer van het tijdschrift14
Vroegere onlinedatum2 nov 2019
StatusGepubliceerd - 1 jul 2020

Vingerafdruk Duik in de onderzoeksthema's van 'Bus travel time prediction based on deep belief network with back-propagation'. Samen vormen ze een unieke vingerafdruk.

Citeer dit