Branching Brownian motion seen from its tip

E.F. Aidékon, J. Berestycki, E. Brunet, Z. Shi

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

63 Citaten (Scopus)
1 Downloads (Pure)

Samenvatting

It has been conjectured since the work of Lalley and Sellke (Ann. Probab., 15, 1052–1061, 1987) that branching Brownian motion seen from its tip (e.g. from its rightmost particle) converges to an invariant point process. Very recently, it emerged that this can be proved in several different ways (see e.g. Brunet and Derrida, A branching random walk seen from the tip, 2010, Poissonian statistics in the extremal process of branching Brownian motion, 2010; Arguin et al., The extremal process of branching Brownian motion, 2011). The structure of this extremal point process turns out to be a Poisson point process with exponential intensity in which each atom has been decorated by an independent copy of an auxiliary point process. The main goal of the present work is to give a complete description of the limit object via an explicit construction of this decoration point process. Another proof and description has been obtained independently by Arguin et al. (The extremal process of branching Brownian motion, 2011).
Originele taal-2Engels
Pagina's (van-tot)405-451
Aantal pagina's47
TijdschriftProbability Theory and Related Fields
Volume157
Nummer van het tijdschrift1-2
DOI's
StatusGepubliceerd - 2013

Vingerafdruk Duik in de onderzoeksthema's van 'Branching Brownian motion seen from its tip'. Samen vormen ze een unieke vingerafdruk.

Citeer dit