Block-Level Surrogate Models for Inference Time Estimation in Hardware Aware Neural Architecture Search

Kurt Stolle, Sebastian Vogel, Fons van der Sommen, Willem P. Sanberg

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

3 Downloads (Pure)

Samenvatting

Hardware-Aware Neural Architecture Search (HA-NAS) is an attractive approach for discovering network architectures that balance task accuracy and deployment efficiency. In an iterative search algorithm, inference time is typically determined at every step by directly profiling architectures on hardware. This imposes limitations on the scalability of search processes because access to specialized devices for profiling is required. As such, the ability to assess inference time without hardware access is an important aspect to enable deep learning on resource-constrained embedded devices. Previous work estimates inference time by summing individual contributions of the architecture’s parts. In this work, we propose using block-level inference time estimators to find the network-level inference time. Individual estimators are trained on collected datasets of independently sampled and profiled architecture block instances. Our experiments on isolated blocks commonly found in classification architectures show that gradient boosted decision trees serve as an accurate surrogate for inference time. More specifically, their Spearman correlation coefficient exceeds 0.98 on all tested platforms. When such blocks are connected in sequence, the sum of all block estimations correlates with the measured network inference time, having Spearman correlation coefficients above 0.71 on evaluated CPUs and an accelerator platform. Furthermore, we demonstrate the applicability of our Surrogate Model (SM) methodology in its intended HA-NAS context. To this end, we evaluate and compare two HA-NAS processes: one that relies on profiling via hardware-in-the-loop and one that leverages block-level surrogate models. We find that both processes yield similar Pareto-optimal architectures. This shows that our method facilitates a similar task-performance outcome without relying on hardware access for profiling during architecture search.
Originele taal-2Engels
TitelMachine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2022, Proceedings
SubtitelEuropean Conference, ECML PKDD 2022, Grenoble, France, September 19–23, 2022, Proceedings, Part V
RedacteurenMassih-Reza Amini, Stéphane Canu, Asja Fischer, Tias Guns, Petra Kralj Novak, Grigorios Tsoumakas
Plaats van productieCham
UitgeverijSpringer
Pagina's463-479
Aantal pagina's17
ISBN van elektronische versie978-3-031-26419-1
ISBN van geprinte versie978-3-031-26418-4
DOI's
StatusGepubliceerd - 17 mrt. 2023
Evenement2022 European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML PKDD 2022 - World Trade Center, Grenoble, Frankrijk
Duur: 19 sep. 202223 sep. 2022
https://2022.ecmlpkdd.org/

Publicatie series

NaamLecture Notes in Computer Science
Volume13717
ISSN van geprinte versie0302-9743
ISSN van elektronische versie1611-3349
NaamLecture Notes in Artificial Intelligence
Volume13717
ISSN van geprinte versie0302-9743
ISSN van elektronische versie1611-3349

Congres

Congres2022 European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML PKDD 2022
Verkorte titelECML PKDD
Land/RegioFrankrijk
StadGrenoble
Periode19/09/2223/09/22
Internet adres

Bibliografische nota

ID 737

Vingerafdruk

Duik in de onderzoeksthema's van 'Block-Level Surrogate Models for Inference Time Estimation in Hardware Aware Neural Architecture Search'. Samen vormen ze een unieke vingerafdruk.

Citeer dit