Block discrete empirical interpolation methods

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

1 Downloads (Pure)

Samenvatting

We present block variants of the discrete empirical interpolation method (DEIM); as a particular application, we will consider a CUR factorization. The block DEIM algorithms are based on the concept of the maximum volume of submatrices and a rank-revealing QR factorization. We also present a version of the block DEIM procedures, which allows for adaptive choice of block size. The results of the experiments indicate that the block DEIM algorithms exhibit comparable accuracy for low-rank matrix approximation compared to the standard DEIM procedure. However, the block DEIM algorithms also demonstrate potential computational advantages, showcasing increased efficiency in terms of computational time.

Originele taal-2Engels
Artikelnummer116186
Aantal pagina's13
TijdschriftJournal of Computational and Applied Mathematics
Volume454
DOI's
StatusGepubliceerd - 15 jan. 2025

Bibliografische nota

Publisher Copyright:
© 2024

Financiering

This work has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sk\u0142odowska-Curie grant agreement No 812912. We thank the editor and the two expert referees for their very valuable suggestions.

FinanciersFinanciernummer
European Union’s Horizon Europe research and innovation programme
H2020 Marie Skłodowska-Curie Actions812912

    Vingerafdruk

    Duik in de onderzoeksthema's van 'Block discrete empirical interpolation methods'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit