Blind Nonparametric Estimation of SISO Continuous-time Systems

Augustus Elton, Rodrigo González, James S. Welsh, Tom A.E. Oomen, Cristian R. Rojas

Onderzoeksoutput: Bijdrage aan tijdschriftCongresartikelpeer review

61 Downloads (Pure)

Samenvatting

Blind system identification is aimed at finding parameters of a system model when the input is inaccessible. In this paper, we propose a blind system identification method that delivers a single-input single-output, continuous-time model in a nonparametric kernel form. We take advantage of the representer theorem to form a joint maximum a posteriori estimator of the input and system impulse response. The identified system model and input are optimised in sequence to overcome the blind problem with generalised cross validation used to select appropriate hyperparameters given some fixed input sequence. We demonstrate via Monte Carlo simulations the accuracy of the method in terms of estimating the input.
Originele taal-2Engels
Pagina's (van-tot)4222-4227
Aantal pagina's6
TijdschriftIFAC-PapersOnLine
Volume56
Nummer van het tijdschrift2
DOI's
StatusGepubliceerd - 1 jul. 2023
Evenement22nd World Congress of the International Federation of Automatic Control (IFAC 2023 World Congress) - Yokohama, Japan
Duur: 9 jul. 202314 jul. 2023
Congresnummer: 22
https://www.ifac2023.org/

Vingerafdruk

Duik in de onderzoeksthema's van 'Blind Nonparametric Estimation of SISO Continuous-time Systems'. Samen vormen ze een unieke vingerafdruk.

Citeer dit