Bisimulation for neighbourhood structures

H.H. Hansen, C.A. Kupke, E. Pacuit

    Onderzoeksoutput: Boek/rapportRapportAcademic

    9 Citaten (Scopus)


    Neighbourhood structures are the standard semantic tool used to reason about non-normal modal logics. In coalgebraic terms, a neighbourhood frame is a coalgebra for the contravariant powerset functor composed with itself, denoted by 2^2. In our paper, we investigate the coalgebraic equivalence notions of 2^2-bisimulation, behavioural equivalence and neighbourhood bisimulation (a notion based on pushouts), with the aim of finding the logically correct notion of equivalence on neighbourhood structures. Our results include relational characterisations for 2^2-bisimulation and neighbourhood bisimulation, and an analogue of Van Benthem's characterisation theorem for all three equivalence notions. We also show that behavioural equivalence gives rise to a Hennessy-Milner theorem, and that this is not the case for the other two equivalence notions.
    Originele taal-2Engels
    Plaats van productieAmsterdam
    UitgeverijInstitute for Logic, Language and Computation (ILLC), University of Amsterdam
    Aantal pagina's23
    StatusGepubliceerd - 2007

    Publicatie series

    NaamPrepublication Series

    Vingerafdruk Duik in de onderzoeksthema's van 'Bisimulation for neighbourhood structures'. Samen vormen ze een unieke vingerafdruk.

    Citeer dit