Samenvatting
Introduction: Bioactive glass (BAG) has been studied widely and seems to be a very promising biomaterial in regeneration of large bone defects and osteomyelitis treatment, because of its bone bonding and antibacterial properties[1]-[5]. Potentially, it could also mechanically reinforce large defects, thus making it suitable for load-bearing applications. However, the mechanical properties of the reconstructive layer and its dependence on BAG:bone allograft mixture composition are unknown.
In this study, we measured the mechanical properties of different impacted BAG/bone graft mixtures. Then these properties were used in micro-Finite Element (FE) patient-specific models to investigate whether these mixtures could restore mechanical properties of large bone defects.
Materials and Methods: Five different S53P4 BAG/bone graft mixtures were impacted in a cylindrical holder, mechanically tested in confined compression and scanned with micro-CT. From these images, the mixture was identified by its three phases: bone, glass or interface region. Micro-Finite-Element (FE) models of the composites were made using a Young’s modulus of 2.5 GPa for bone and 35 GPa for BAG. The Young’s modulus for the interface region was determined by fitting experimental and micro-FE results for the same specimens.
High-Resolution peripheral quantitative CT scans of a 9 mm region of the distal tibia of seven subjects were used for studying the reinforcement potential. Micro-FE models of this region were made to determine its stiffness in the original state, with a simulated cortical defect, and after that a mixture of BAG/bone or BAG alone was simulated in the defect.
Results: The confined compression tests showed a strong dependence of the Young’s modulus of the BAG/bone composite on the amount of BAG, ranging from 116.7±18.2 to 654.2±35.2 MPa. The micro-FE results could fairly reproduce these measured moduli, when using a stiffness of 25 MPa for the interface layer (R2=0.678, see Figure 1).
In this study, we measured the mechanical properties of different impacted BAG/bone graft mixtures. Then these properties were used in micro-Finite Element (FE) patient-specific models to investigate whether these mixtures could restore mechanical properties of large bone defects.
Materials and Methods: Five different S53P4 BAG/bone graft mixtures were impacted in a cylindrical holder, mechanically tested in confined compression and scanned with micro-CT. From these images, the mixture was identified by its three phases: bone, glass or interface region. Micro-Finite-Element (FE) models of the composites were made using a Young’s modulus of 2.5 GPa for bone and 35 GPa for BAG. The Young’s modulus for the interface region was determined by fitting experimental and micro-FE results for the same specimens.
High-Resolution peripheral quantitative CT scans of a 9 mm region of the distal tibia of seven subjects were used for studying the reinforcement potential. Micro-FE models of this region were made to determine its stiffness in the original state, with a simulated cortical defect, and after that a mixture of BAG/bone or BAG alone was simulated in the defect.
Results: The confined compression tests showed a strong dependence of the Young’s modulus of the BAG/bone composite on the amount of BAG, ranging from 116.7±18.2 to 654.2±35.2 MPa. The micro-FE results could fairly reproduce these measured moduli, when using a stiffness of 25 MPa for the interface layer (R2=0.678, see Figure 1).
Originele taal-2 | Engels |
---|---|
Aantal pagina's | 1 |
DOI's | |
Status | Gepubliceerd - 30 mrt. 2016 |
Evenement | 10th World Biomaterials Congress - Palais des Congrès de Montréal , Montréal, Canada Duur: 17 jun. 2016 → 22 jun. 2016 http://www.wbc2016.org/ |
Congres
Congres | 10th World Biomaterials Congress |
---|---|
Verkorte titel | WBC 2016 |
Land/Regio | Canada |
Stad | Montréal |
Periode | 17/06/16 → 22/06/16 |
Internet adres |