Bifurcations of the Hamiltonian fourfold 1:1 resonance with toroidal symmetry

J. Egea, S. Ferrer, J.C. Meer, van der

Onderzoeksoutput: Bijdrage aan tijdschriftTijdschriftartikelAcademicpeer review

18 Citaten (Scopus)
1 Downloads (Pure)

Samenvatting

This paper deals with the analysis of Hamiltonian Hopf as well as saddle-center bifurcations in 4-DOF systems defined by perturbed isotropic oscillators (1:1:1:1 resonance), in the presence of two quadratic symmetries ¿ and L 1. When we normalize the system with respect to the quadratic part of the energy and carry out a reduction with respect to a three-torus group we end up with a 1-DOF system with several parameters on the thrice reduced phase space. Then, we focus our analysis on the evolution of relative equilibria around singular points of this reduced phase space. In particular, dealing with the Hamiltonian Hopf bifurcation the ‘geometric approach’ is used, following the steps set up by one of the authors in the context of 3-DOF systems. In order to see the interplay between integrals and physical parameters in the analysis of bifurcations, we consider as a perturbation a one-parameter family, which in particular includes one of the classical Stark–Zeeman models (parallel case) in three dimensions.
Originele taal-2Engels
Pagina's (van-tot)835-874
TijdschriftJournal of Nonlinear Science
Volume21
Nummer van het tijdschrift6
DOI's
StatusGepubliceerd - 2011

Vingerafdruk

Duik in de onderzoeksthema's van 'Bifurcations of the Hamiltonian fourfold 1:1 resonance with toroidal symmetry'. Samen vormen ze een unieke vingerafdruk.

Citeer dit