Bias disparity in collaborative recommendation: algorithmic evaluation and comparison

Masoud Mansoury, Bamshad Mobasher, Robin Burke, Mykola Pechenizkiy

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

7 Citaten (Scopus)
132 Downloads (Pure)

Samenvatting

Research on fairness in machine learning has been recently extended to recommender systems. One of the factors that may impact fairness is bias disparity, the degree to which a group’s preferences on various item categories fail to be reflected in the recommendations they receive. In some cases biases in the original data may be amplified or reversed by the underlying recommendation algorithm. In this paper, we explore how different recommendation algorithms reflect the tradeoff between ranking quality and bias disparity. Our experiments include neighborhood-based, model-based, and trust-aware recommendation algorithms.

Originele taal-2Engels
TitelProceedings of the Workshop on Recommendation in Multi-stakeholder Environments co-located with the 13th ACM Conference on Recommender Systems (RecSys 2019)
RedacteurenRobin Burke, Himan Abdollahpouri, Edward Malthouse
UitgeverijCEUR-WS.org
Aantal pagina's7
StatusGepubliceerd - 1 jan. 2019
Evenement2019 Workshop on Recommendation in Multi-Stakeholder Environments, RMSE 2019 - Copenhagen, Denemarken
Duur: 20 sep. 2019 → …

Publicatie series

NaamCEUR Workshop Proceedings
UitgeverijCEUR-WS.org
Volume2440
ISSN van geprinte versie1613-0073

Congres

Congres2019 Workshop on Recommendation in Multi-Stakeholder Environments, RMSE 2019
Land/RegioDenemarken
StadCopenhagen
Periode20/09/19 → …

Vingerafdruk

Duik in de onderzoeksthema's van 'Bias disparity in collaborative recommendation: algorithmic evaluation and comparison'. Samen vormen ze een unieke vingerafdruk.

Citeer dit