Benefits of Human-AI Interaction for Expert Users Interacting with Prediction Models: a Study on Marathon Running

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

1 Citaat (Scopus)
62 Downloads (Pure)

Samenvatting

Users with large domain knowledge can be reluctant to use prediction models. This also applies to the sports domain, where running coaches rarely rely on marathon prediction tools for race-plan advice for their runners’ next marathon. This paper studies the effect of adding interactivity to such prediction models, to incorporate and acknowledge users’ domain knowledge. In think-aloud sessions and an online study, we tested an interactive machine learning tool that allowed coaches to indicate the importance of earlier races feeding into the model. Our results show that coaches deploy rich knowledge when working with the model on runners familiar to them, and their adaptations improved model accuracy. Those coaches who could interact with the model displayed more trust and acceptance in the resulting predictions.
Originele taal-2Engels
TitelIUI '24
SubtitelProceedings of the 29th International Conference on Intelligent User Interfaces
Plaats van productieNew York
UitgeverijAssociation for Computing Machinery, Inc.
Pagina's245–258
Aantal pagina's14
ISBN van elektronische versie979-8-4007-0508-3
DOI's
StatusGepubliceerd - 5 apr. 2024
EvenementIUI 2024 – International Conference on Intelligent User Interface (IUI '24) - Greenville, Greenville, Verenigde Staten van Amerika
Duur: 18 mrt. 202421 mrt. 2024

Congres

CongresIUI 2024 – International Conference on Intelligent User Interface (IUI '24)
Verkorte titelIUI
Land/RegioVerenigde Staten van Amerika
StadGreenville
Periode18/03/2421/03/24

Financiering

We would like to thank our student Ylja van Miltenburg for her extensive contribution on building the interactive tool and running the user study. We also thank the participants for sharing their time and insights with us. This research was performed within the framework of the strategic joint research program on Data Science between TU/e and Philips Electronics Nederland B.V.

Trefwoorden

  • AI-assisted decision making
  • Case-Based Reasoning (CBR)
  • Human-AI collaboration
  • Interactive Machine Learning (IML)
  • domain experts
  • marathon running
  • subject matter expertise
  • task familiarity
  • user trust

Vingerafdruk

Duik in de onderzoeksthema's van 'Benefits of Human-AI Interaction for Expert Users Interacting with Prediction Models: a Study on Marathon Running'. Samen vormen ze een unieke vingerafdruk.

Citeer dit