Samenvatting
This work presents a novel framework to train clustering models collaboratively without compromising accuracy while accommodating privacy and security in a decentralized manner. Our decentralized collaborative learning model removes the single point of failure and excludes unreliable input by designing a committee-based consensus method in a blockchain-based federated learning, which is equipped with a reputation system. We present a prototype implementation of our approach and show that its performance is comparable with centralized clustering regardless of the distribution of data among devices.
Originele taal-2 | Engels |
---|---|
Titel | 2023 IEEE 22nd International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom) |
Redacteuren | Jia Hu, Geyong Min, Guojun Wang |
Uitgeverij | Institute of Electrical and Electronics Engineers |
Pagina's | 1348-1354 |
Aantal pagina's | 7 |
ISBN van elektronische versie | 9798350381993 |
DOI's | |
Status | Gepubliceerd - 29 mei 2024 |
Evenement | 22nd IEEE International Conference on Trust, Security and Privacy in Computing and Communications, TrustCom 2023 - Exeter, Verenigd Koninkrijk Duur: 1 nov. 2023 → 3 nov. 2023 |
Congres
Congres | 22nd IEEE International Conference on Trust, Security and Privacy in Computing and Communications, TrustCom 2023 |
---|---|
Land/Regio | Verenigd Koninkrijk |
Stad | Exeter |
Periode | 1/11/23 → 3/11/23 |
Bibliografische nota
Publisher Copyright:© 2023 IEEE.