BC-FL k-means: A Blockchain-based Framework for Federated Clustering

Mina Alishahi, Wouter Leeuw, Nicola Zannone

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

Samenvatting

This work presents a novel framework to train clustering models collaboratively without compromising accuracy while accommodating privacy and security in a decentralized manner. Our decentralized collaborative learning model removes the single point of failure and excludes unreliable input by designing a committee-based consensus method in a blockchain-based federated learning, which is equipped with a reputation system. We present a prototype implementation of our approach and show that its performance is comparable with centralized clustering regardless of the distribution of data among devices.

Originele taal-2Engels
Titel2023 IEEE 22nd International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom)
RedacteurenJia Hu, Geyong Min, Guojun Wang
UitgeverijInstitute of Electrical and Electronics Engineers
Pagina's1348-1354
Aantal pagina's7
ISBN van elektronische versie9798350381993
DOI's
StatusGepubliceerd - 29 mei 2024
Evenement22nd IEEE International Conference on Trust, Security and Privacy in Computing and Communications, TrustCom 2023 - Exeter, Verenigd Koninkrijk
Duur: 1 nov. 20233 nov. 2023

Congres

Congres22nd IEEE International Conference on Trust, Security and Privacy in Computing and Communications, TrustCom 2023
Land/RegioVerenigd Koninkrijk
StadExeter
Periode1/11/233/11/23

Bibliografische nota

Publisher Copyright:
© 2023 IEEE.

Vingerafdruk

Duik in de onderzoeksthema's van 'BC-FL k-means: A Blockchain-based Framework for Federated Clustering'. Samen vormen ze een unieke vingerafdruk.

Citeer dit