Bayesian Independence Test with Mixed-type Variables

Alessio Benavoli, Cassio de Campos

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

2 Citaten (Scopus)

Samenvatting

A fundamental task in AI is to assess (in)dependence between mixed-type variables (text, image, sound). We propose a Bayesian kernelised correlation test of (in)dependence using a Dirichlet process model. The new measure of (in)dependence allows us to answer some fundamental questions: Based on data, are (mixed-type) variables independent? How likely is dependence/independence to hold? How high is the probability that two mixed-type variables are more than just weakly dependent? We theoretically show the properties of the approach, as well as algorithms for fast computation with it. We empirically demonstrate the effectiveness of the proposed method by analysing its performance and by comparing it with other frequentist and Bayesian approaches on a range of datasets and tasks with mixed-type variables.
Originele taal-2Engels
TitelIEEE 8th International Conference on Data Science and Advanced Analytics (DSAA)
UitgeverijIEEE Press
ISBN van elektronische versie9781665420990
DOI's
StatusGepubliceerd - 2021

Trefwoorden

  • stat.ML
  • cs.LG

Vingerafdruk

Duik in de onderzoeksthema's van 'Bayesian Independence Test with Mixed-type Variables'. Samen vormen ze een unieke vingerafdruk.

Citeer dit