Samenvatting
Active Inference is an emerging framework for designing intelligent agents. In an Active Inference setting, any task is formulated as a variational free energy minimisation problem on a generative probabilistic model. Goal-directed behaviour relies on a clear specification of desired future observations. Learning desired observations would open up the Active Inference approach to problems where these are difficult to specify a priori. This paper introduces the BAyesian Target Modelling for Active iNference (BATMAN) approach, which augments an Active Inference agent with an additional, separate model that learns desired future observations from a separate data source. The main contribution of this paper is the design of a coupled generative model structure that facilitates learning desired future observations for Active Inference agents and supports integration of Active Inference and classical methods in a joint framework. We provide proof-of-concept validation for BATMAN through simulations.
Originele taal-2 | Engels |
---|---|
Titel | 2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 - Proceedings |
Uitgeverij | Institute of Electrical and Electronics Engineers |
Pagina's | 3852-3856 |
Aantal pagina's | 5 |
ISBN van elektronische versie | 978-1-5090-6631-5 |
ISBN van geprinte versie | 978-1-5090-6632-2 |
DOI's | |
Status | Gepubliceerd - mei 2020 |
Evenement | 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2020) - Virtual, Barcelona, Spanje Duur: 4 mei 2020 → 8 mei 2020 https://2020.ieeeicassp.org/ |
Congres
Congres | 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2020) |
---|---|
Verkorte titel | ICASSP 2020 |
Land/Regio | Spanje |
Stad | Barcelona |
Periode | 4/05/20 → 8/05/20 |
Internet adres |