Barrett's lesion detection using a minimal integer-based neural network for embedded systems integration

Tim Boers, Koen Kusters, Kiki N. Fockens, Jelmer B. Jukema, Martijn R. Jong, Albert J. (Jeroen) de Groof, Jacques J.G.H.M. Bergman, Fons van der Sommen, Peter H.N. de With

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

1 Citaat (Scopus)
50 Downloads (Pure)

Samenvatting

Embedded processing architectures are often integrated into devices to develop novel functions in a cost-effective medical system. In order to integrate neural networks in medical equipment, these models require specialized optimizations for preparing their integration in a high-efficiency and power-constrained environment. In this paper, we research the feasibility of quantized networks with limited memory for the detection of Barrett’s neoplasia. An Efficientnet-lite1+Deeplabv3 architecture is proposed, which is trained using a quantization-aware training scheme, in order to achieve an 8-bit integer-based model. The performance of the quantized model is comparable with float32 precision models. We show that the quantized model with only 5-MB memory is capable of reaching the same performance scores with 95% Area Under the Curve (AUC), compared to a fullprecision U-Net architecture, which is 10× larger. We have also optimized the segmentation head for efficiency and reduced the output to a resolution of 32×32 pixels. The results show that this resolution captures sufficient segmentation detail to reach a DICE score of 66.51%, which is comparable to the full floating-point model. The proposed lightweight approach also makes the model quite energy-efficient, since it can be real-time executed on a 2-Watt Coral Edge TPU. The obtained low power consumption of the lightweight Barrett’s esophagus neoplasia detection and segmentation system enables the direct integration into standard endoscopic equipment.
Originele taal-2Engels
TitelMedical Imaging 2023
SubtitelComputer-Aided Diagnosis
RedacteurenKhan M. Iftekharuddin, Weijie Chen
UitgeverijSPIE
Pagina's1-6
Aantal pagina's6
ISBN van elektronische versie9781510660366
ISBN van geprinte versie9781510660359
DOI's
StatusGepubliceerd - 7 apr. 2023
EvenementSpie Medical Imaging 2023 - San Diego, Verenigde Staten van Amerika
Duur: 19 feb. 202324 feb. 2023

Publicatie series

NaamProceedings of SPIE
Volume12465
ISSN van geprinte versie1605-7422
ISSN van elektronische versie2410-9045

Congres

CongresSpie Medical Imaging 2023
Land/RegioVerenigde Staten van Amerika
StadSan Diego
Periode19/02/2324/02/23

Vingerafdruk

Duik in de onderzoeksthema's van 'Barrett's lesion detection using a minimal integer-based neural network for embedded systems integration'. Samen vormen ze een unieke vingerafdruk.

Citeer dit