Bandit-inspired memetic algorithms for solving quadratic assignment problems

Fr. Puglierin, M.M. Drugan, M.A. Wiering

Onderzoeksoutput: Hoofdstuk in Boek/Rapport/CongresprocedureConferentiebijdrageAcademicpeer review

6 Citaten (Scopus)

Samenvatting

In this paper we propose a novel algorithm called the Bandit-Inspired Memetic Algorithm (BIMA) and we have applied it to solve different large instances of the Quadratic Assignment Problem (QAP). Like other memetic algorithms, BIMA makes use of local search and a population of solutions. The novelty lies in the use of multi-armed bandit algorithms and assignment matrices for generating novel solutions, which will then be brought to a local minimum by local search. We have compared BIMA to multi-start local search (MLS) and iterated local search (ILS) on five QAP instances, and the results show that BIMA significantly outperforms these competitors.
Originele taal-2Engels
Titel2013 IEEE Congress on Evolutionary Computation (CEC), 20-23 June 2013, Cancun, Mexico
Plaats van productiePiscataway
UitgeverijInstitute of Electrical and Electronics Engineers
Pagina's2078-2085
ISBN van geprinte versie978-1-4799-0453-2
DOI's
StatusGepubliceerd - 2013
Extern gepubliceerdJa

Vingerafdruk

Duik in de onderzoeksthema's van 'Bandit-inspired memetic algorithms for solving quadratic assignment problems'. Samen vormen ze een unieke vingerafdruk.

Citeer dit