Automorphism groups of Gaussian chain graph models

J. Draisma, P.W. Zwiernik

Onderzoeksoutput: Boek/rapportRapportAcademic

23 Downloads (Pure)

Samenvatting

In this paper we extend earlier work on groups acting on Gaussian graphical models to Gaussian Bayesian networks and more general Gaussian models defined by chain graphs. We discuss the maximal group which leaves a given model invariant and provide basic statistical applications of this result. This includes equivariant estimation, maximal invariants and robustness. The computation of the group requires finding the essential graph. However, by applying Stúdeny's theory of imsets we show that computations for DAGs can be performed efficiently without building the essential graph. In our proof we derive simple necessary and sufficient conditions on vanishing sub-minors of the concentration matrix in the model.
Originele taal-2Engels
Uitgeverijs.n.
Aantal pagina's26
StatusGepubliceerd - 2015

Publicatie series

NaamarXiv.org
Volume1501.03013 [math.ST]

Vingerafdruk

Duik in de onderzoeksthema's van 'Automorphism groups of Gaussian chain graph models'. Samen vormen ze een unieke vingerafdruk.

Citeer dit